Model Inputs and Outputs
model_navigator.triton.InputTensorSpec
dataclass
InputTensorSpec(name, shape, dtype=None, reshape=lambda: ()(), is_shape_tensor=False, optional=False, format=None, allow_ragged_batch=False)
Bases: BaseTensorSpec
Stores specification of single input tensor.
This includes name, shape, dtype and more parameters available for input tensor in Triton Inference Server:
Read more in Triton Inference server model configuration
Parameters:
-
optional
(bool
, default:False
) –Flag marking the input is optional for the model execution
-
format
(Optional[InputTensorFormat]
, default:None
) –The format of the input.
-
allow_ragged_batch
(bool
, default:False
) –Flag marking the input is allowed to be "ragged" in a dynamically created batch.
__post_init__
Validate the configuration for early error handling.
Source code in model_navigator/triton/specialized_configs/common.py
model_navigator.triton.InputTensorFormat
Bases: Enum
Format for input tensor.
Read more in Triton Inference server model configuration
Parameters:
-
FORMAT_NONE
–0
-
FORMAT_NHWC
–1
-
FORMAT_NCHW
–2
model_navigator.triton.OutputTensorSpec
dataclass
OutputTensorSpec(name, shape, dtype=None, reshape=lambda: ()(), is_shape_tensor=False, label_filename=None)
Bases: BaseTensorSpec
Stores specification of single output tensor.
This includes name, shape, dtype and more parameters available for output tensor in Triton Inference Server:
Read more in Triton Inference server model configuration
Parameters:
__post_init__
Validate the configuration for early error handling.