Quick Start
The prerequisite for this section is installing the Triton Model Navigator which can be found in installation section.
The quick start presents how to optimize Python model for deployment on Triton Inference Server. In the example we are using a simple TensorFlow 2 model.
Export and optimize model
To use Triton Model Navigator you must prepare model and dataloader. We recommend to create following helper functions:
get_model
- return model objectget_dataloader
- generate samples required for export and conversionget_verify_func
(optionally) - validate the correctness of models based on implemented metric
Next you can use Triton Model Navigator optimize
function with provided model, dataloader and verify function
to export and convert model to all supported formats.
See the below example of optimizing a simple TensorFlow model.
import logging
import numpy as np
import tensorflow as tf
import model_navigator as nav
# enable tensorflow memory growth to avoid allocating all GPU memory
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
LOGGER = logging.getLogger(__name__)
# dataloader is used for inference and finding input shapes of the model.
# If you do not have dataloader, create one with samples with min and max shapes.
def get_dataloader():
return [np.random.rand(1, 224, 224, 3).astype("float32") for _ in range(10)]
def get_verify_function():
def verify_func(ys_runner, ys_expected):
for a, b in zip(ys_runner, ys_expected):
if not (a["output__0"] == b["output__0"]).all():
return False
return True
return verify_func
# Model inputs must be a Tensor to support deployment on Triton Inference Server.
def get_model():
inp = tf.keras.layers.Input((224, 224, 3))
layer_output = tf.keras.layers.Lambda(lambda x: x)(inp)
layer_output = tf.keras.layers.Lambda(lambda x: x)(layer_output)
layer_output = tf.keras.layers.Lambda(lambda x: x)(layer_output)
layer_output = tf.keras.layers.Lambda(lambda x: x)(layer_output)
layer_output = tf.keras.layers.Lambda(lambda x: x)(layer_output)
model_output = tf.keras.layers.Lambda(lambda x: x)(layer_output)
return tf.keras.Model(inp, model_output)
# Check documentation for more details about Profiler Configuration options.
def get_profiler_config():
return nav.ProfilerConfig()
model = get_model()
dataloader = get_dataloader()
verify_func = get_verify_function()
profiler_config = get_profiler_config()
# Model Navigator optimize starts export, optimization and testing process.
# The resulting package represents all artifacts produced by Model Navigator.
package = nav.tensorflow.optimize(
model=model,
profiler_config=profiler_config,
target_formats=(nav.Format.ONNX,),
dataloader=dataloader,
verify_func=verify_func,
)
# Save nav package that can be used for Triton Inference Server deployment or obtaining model runner later.
# The package contains base format checkpoints that can be used for all other conversions.
# Models with minimal latency and maximal throughput are added to the package.
nav.package.save(package=package, path="mlp.nav")
You can customize behavior of export and conversion steps
passing CustomConfig
to optimize
function.
NVIDIA Triton Inference Server deployment
If you prefer the standalone NVIDIA Triton Inference Server you can create
and use model_repository
.
import logging
import pathlib
from model_navigator.exceptions import ModelNavigatorEmptyPackageError, ModelNavigatorError, ModelNavigatorWrongParameterError
import model_navigator as nav
LOGGER = logging.getLogger(__name__)
package = nav.package.load("mlp.nav", "load_workspace")
# Create model_repository for standalone Triton deployment
try:
nav.triton.model_repository.add_model_from_package(
model_repository_path=pathlib.Path("model_repository"), model_name="dummy_model", package=package
)
except (ModelNavigatorWrongParameterError, ModelNavigatorEmptyPackageError, ModelNavigatorError) as e:
LOGGER.warning(f"Model repository cannot be created.\n{str(e)}")
Use command to start server with provided model_repository
: