TensorFlow 2
model_navigator.api.config.TensorFlowConfig
dataclass
Bases: CustomConfigForFormat
TensorFlow custom config used for SavedModel export.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
jit_compile |
Tuple[Optional[bool], ...]
|
Enable or Disable jit_compile flag for tf.function wrapper for Jax infer function. |
(None)
|
enable_xla |
Tuple[Optional[bool], ...]
|
Enable or Disable enable_xla flag for jax2tf converter. |
(None)
|
format: Format
property
defaults()
model_navigator.api.config.TensorFlowTensorRTConfig
dataclass
Bases: CustomConfigForFormat
TensorFlow TensorRT custom config used for TensorRT SavedModel export.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
precision |
Union[Union[str, TensorRTPrecision], Tuple[Union[str, TensorRTPrecision], ...]]
|
TensorRT precision. |
DEFAULT_TENSORRT_PRECISION
|
max_workspace_size |
Optional[int]
|
Max workspace size used by converter. |
DEFAULT_MAX_WORKSPACE_SIZE
|
minimum_segment_size |
int
|
Min size of subgraph. |
DEFAULT_MIN_SEGMENT_SIZE
|
trt_profile |
Optional[TensorRTProfile]
|
TensorRT profile. |
None
|
format: Format
property
Format represented by CustomConfig.
Returns:
Type | Description |
---|---|
Format
|
TensorFlowTensorRTConfig format |
__post_init__()
Parse dataclass enums.
defaults()
Update parameters to defaults.
Source code in model_navigator/api/config.py
from_dict(config_dict)
classmethod
Instantiate TensorFlowTensorRTConfig from adictionary.
Source code in model_navigator/api/config.py
model_navigator.api.tensorflow
TensorFlow optimize API.
optimize(model, dataloader, sample_count=DEFAULT_SAMPLE_COUNT, batching=True, input_names=None, output_names=None, target_formats=None, runners=None, profiler_config=None, workspace=None, verbose=False, debug=False, verify_func=None, custom_configs=None)
Function exports TensorFlow2 model to all supported formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
tensorflow.keras.Model
|
TensorFlow2 model object |
required |
dataloader |
SizedDataLoader
|
Sized iterable with data that will be feed to the model |
required |
sample_count |
int
|
Limits how many samples will be used from dataloader |
DEFAULT_SAMPLE_COUNT
|
batching |
Optional[bool]
|
Enable or disable batching on first (index 0) dimension of the model |
True
|
input_names |
Optional[Tuple[str, ...]]
|
Model input names |
None
|
output_names |
Optional[Tuple[str, ...]]
|
Model output names |
None
|
target_formats |
Optional[Union[Union[str, Format], Tuple[Union[str, Format], ...]]]
|
Target model formats for optimize process |
None
|
runners |
Optional[Union[Union[str, Type[NavigatorRunner]], Tuple[Union[str, Type[NavigatorRunner]], ...]]]
|
Use only runners provided as paramter |
None
|
profiler_config |
Optional[ProfilerConfig]
|
Profiling config |
None
|
workspace |
Optional[Path]
|
Workspace where packages will be extracted |
None
|
verbose |
bool
|
Enable verbose logging |
False
|
debug |
bool
|
Enable debug logging from commands |
False
|
verify_func |
Optional[VerifyFunction]
|
Function for additional model verifcation |
None
|
custom_configs |
Optional[Sequence[CustomConfig]]
|
Sequence of CustomConfigs used to control produced artifacts |
None
|
Returns:
Type | Description |
---|---|
Package
|
Package descriptor representing created package. |
Source code in model_navigator/api/tensorflow.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|