Python
model_navigator.api.python
Python optimize API.
optimize
optimize(model, dataloader, sample_count=DEFAULT_SAMPLE_COUNT, batching=True, target_device=DeviceKind.CPU, runners=None, optimization_profile=None, workspace=None, verbose=False, debug=False, verify_func=None, custom_configs=None)
Entrypoint for Python model optimize.
Perform correctness testing, profiling and model verification.
Parameters:
- 
        
model(Callable) –Model inference function
 - 
        
dataloader(SizedDataLoader) –Sized iterable with data that will be feed to the model
 - 
        
sample_count(int, default:DEFAULT_SAMPLE_COUNT) –Limits how many samples will be used from dataloader
 - 
        
batching(Optional[bool], default:True) –Enable or disable batching on first (index 0) dimension of the model
 - 
        
target_device(Optional[DeviceKind], default:CPU) –Target device for optimize process, default is CPU
 - 
        
runners(Optional[Tuple[Union[str, Type[NavigatorRunner]], ...]], default:None) –Use only runners provided as parameter
 - 
        
optimization_profile(Optional[OptimizationProfile], default:None) –Optimization profile for conversion and profiling
 - 
        
workspace(Optional[Path], default:None) –Workspace where packages will be extracted
 - 
        
verbose(bool, default:False) –Enable verbose logging
 - 
        
debug(bool, default:False) –Enable debug logging from commands
 - 
        
verify_func(Optional[VerifyFunction], default:None) –Function for additional model verification
 - 
        
custom_configs(Optional[Sequence[CustomConfig]], default:None) –Sequence of CustomConfigs used to control produced artifacts
 
Returns:
- 
            
Package–Package descriptor representing created package.