Binding Models to Triton
The Triton class provides methods to bind one or multiple models to the Triton server in order to expose HTTP/gRPC endpoints for inference serving:
import numpy as np
from pytriton.decorators import batch
from pytriton.model_config import ModelConfig, Tensor
from pytriton.triton import Triton
@batch
def infer_fn(**inputs: np.ndarray):
input1, input2 = inputs.values()
outputs = model(input1, input2)
return [outputs]
with Triton() as triton:
triton.bind(
model_name="ModelName",
infer_func=infer_fn,
inputs=[
Tensor(shape=(1,), dtype=np.bytes_), # sample containing single bytes value
Tensor(shape=(-1,), dtype=np.bytes_) # sample containing vector of bytes
],
outputs=[
Tensor(shape=(-1,), dtype=np.float32),
],
config=ModelConfig(max_batch_size=8),
strict=True,
)
The bind
method's mandatory arguments are:
model_name
: defines under which name the model is available in Triton Inference Serverinfer_func
: function or PythonCallable
object which obtains the data passed in the request and returns the outputinputs
: defines the number, types, and shapes for model inputsoutputs
: defines the number, types, and shapes for model outputsconfig
: more customization for model deployment and behavior on the Triton serverstrict
: enable inference callable output validation of data types and shapes against provided model config (default: False)
Once the bind
method is called, the model is created in the Triton Inference Server model store under
the provided model_name
.
Inference Callable
The inference callable is an entry point for inference. This can be any callable that receives the data for model inputs in the form of a list of request dictionaries where input names are mapped into ndarrays. Input can be also adapted to different more convenient forms using a set of decorators. More details about designing inference callable and using of decorators can be found in Inference Callable page.
In the simplest implementation for functionality that passes input data on output, a lambda can be used:
import numpy as np
from pytriton.model_config import ModelConfig, Tensor
from pytriton.triton import Triton
with Triton() as triton:
triton.bind(
model_name="Identity",
infer_func=lambda requests: requests,
inputs=[Tensor(dtype=np.float32, shape=(1,))],
outputs=[Tensor(dtype=np.float32, shape=(1,))],
config=ModelConfig(max_batch_size=8)
)
Multi-instance model inference
Multi-instance model inference is a mechanism for loading multiple instances of the same model and calling them alternately (to hide transfer overhead).
With the Triton
class, it can be realized by providing the list of multiple inference callables to Triton.bind
in the infer_func
parameter.
The example presents multiple instances of the Linear PyTorch model loaded on separate devices.
First, define the wrapper class for the inference handler. The class initialization receives a model and device as
arguments. The inference handling is done by method __call__
where the model
instance is called:
import torch
from pytriton.decorators import batch
class _InferFuncWrapper:
def __init__(self, model: torch.nn.Module, device: str):
self._model = model
self._device = device
@batch
def __call__(self, **inputs):
(input1_batch,) = inputs.values()
input1_batch_tensor = torch.from_numpy(input1_batch).to(self._device)
output1_batch_tensor = self._model(input1_batch_tensor)
output1_batch = output1_batch_tensor.cpu().detach().numpy()
return [output1_batch]
Next, create a factory function where a model and instances of _InferFuncWrapper
are created - one per each device:
def _infer_function_factory(devices):
infer_fns = []
for device in devices:
model = torch.nn.Linear(20, 30).to(device).eval()
infer_fns.append(_InferFuncWrapper(model=model, device=device))
return infer_fns
Finally, the list of callable objects is passed to infer_func
parameter of the Triton.bind
function:
import numpy as np
from pytriton.triton import Triton
from pytriton.model_config import ModelConfig, Tensor
with Triton() as triton:
triton.bind(
model_name="Linear",
infer_func=_infer_function_factory(devices=["cuda", "cpu"]),
inputs=[
Tensor(dtype=np.float32, shape=(-1,)),
],
outputs=[
Tensor(dtype=np.float32, shape=(-1,)),
],
config=ModelConfig(max_batch_size=16),
)
...
Once the multiple callable objects are passed to infer_func
, the Triton server gets information that multiple instances
of the same model have been created. The incoming requests are distributed among created instances. In our case executing
two instances of a Linear
model loaded on CPU and GPU devices.
Defining Inputs and Outputs
The integration of the Python model requires the inputs and outputs types of the model. This is required to correctly map the input and output data passed through the Triton Inference Server.
The simplest definition of model inputs and outputs expects providing the type of data and the shape per input:
import numpy as np
from pytriton.model_config import Tensor
inputs = [
Tensor(dtype=np.float32, shape=(-1,)),
]
output = [
Tensor(dtype=np.float32, shape=(-1,)),
Tensor(dtype=np.int32, shape=(-1,)),
]
The provided configuration creates the following tensors:
- Single input:
- name: INPUT_1, data type: FLOAT32, shape=(-1,)
- Two outputs:
- name: OUTPUT_1, data type: FLOAT32, shape=(-1,)
- name: OUTPUT_2, data type: INT32, shape=(-1,)
The -1
means a dynamic shape of the input or output.
To define the name of the input and its exact shape, the following definition can be used:
import numpy as np
from pytriton.model_config import Tensor
inputs = [
Tensor(name="image", dtype=np.float32, shape=(224, 224, 3)),
]
outputs = [
Tensor(name="class", dtype=np.int32, shape=(1000,)),
]
This definition describes that the model has:
- a single input named
image
of size 224x224x3 and 32-bit floating-point data type - a single output named
class
of size 1000 and 32-bit integer data type.
The dtype
parameter can be either numpy.dtype
, numpy.dtype.type
, or str
. For example:
import numpy as np
from pytriton.model_config import Tensor
tensor1 = Tensor(name="tensor1", shape=(-1,), dtype=np.float32),
tensor2 = Tensor(name="tensor2", shape=(-1,), dtype=np.float32().dtype),
tensor3 = Tensor(name="tensor3", shape=(-1,), dtype="float32"),
dtype for bytes and string inputs/outputs
When using the bytes
dtype, NumPy removes trailing \x00
bytes.
Therefore, for arbitrary bytes, it is required to use object
dtype.
> np.array([b"\xff\x00"])
array([b'\xff'], dtype='|S2')
> np.array([b"\xff\x00"], dtype=object)
array([b'\xff\x00'], dtype=object)
For ease of use, for encoded string values, users might use bytes
dtype.
Throwing Unrecoverable errors
When the model gets into a state where further inference is impossible, you can throw [PyTritonUnrecoverableError][pytriton.exceptions.PyTritonUnrecoverableError] from the inference callable. This will cause NVIDIA Triton Inference Server to shut down. This might be useful when the model is deployed on a cluster in a multi-node setup. In that case to recover the model you need to restart all "workers" on the cluster.
When the model gets into a state where further inference is impossible, you can throw the [PyTritonUnrecoverableError][pytriton.exceptions.PyTritonUnrecoverableError] from the inference callable. This will cause the NVIDIA Triton Inference Server to shut down. This might be useful when the model is deployed on a cluster in a multi-node setup. In that case, to recover the model, you need to restart all "workers" on the cluster.
from typing import Dict
import numpy as np
from pytriton.decorators import batch
from pytriton.exceptions import PyTritonUnrecoverableError
@batch
def infer_fn(**inputs: np.ndarray) -> Dict[str, np.ndarray]:
...
try:
outputs = model(**inputs)
except Exception as e:
raise PyTritonUnrecoverableError(
"Some unrecoverable error occurred, "
"thus no further inferences are possible."
) from e
...
return outputs