Skip to content

Installing PyTriton

This guide shows you how to install PyTriton for your machine learning inference needs.

Prerequisites

Before installing PyTriton, ensure your system meets these requirements:

  • An operating system with glibc >= 2.35
  • Python version >= 3.8
  • pip >= 20.3

To check your glibc version:

ldd --version

Quick Installation Guide

The fastest way to install PyTriton is using pip:

pip install nvidia-pytriton

Triton Inference Server binaries

The Triton Inference Server binaries are automatically installed as part of the PyTriton package.

Installation Methods

How to install using system Python

apt update
apt install -y python3 python3-pip

pip install nvidia-pytriton

How to install using Python virtualenv

apt update
apt install -y python3 python3-venv python3-pip

# Create and activate virtualenv
python3 -m venv .venv
source .venv/bin/activate

pip install nvidia-pytriton

How to install using uv

apt update
apt install -y curl

# Install uv
curl -LsSf https://astral.sh/uv/install.sh | UV_INSTALL_DIR=/usr/local/bin sh

# Create virtual environment (change 3.10 to your desired Python version)
uv venv -p3.10 .venv

# Export the library path
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$(uv run python3 -c "import sysconfig; print(sysconfig.get_config_var('LIBDIR'))")

# Install PyTriton in created virtual environment; by default uv use .venv in the current directory, or in the nearest parent directory if no virtual environment is active
uv pip install nvidia-pytriton

How to install using miniconda

apt update
apt install -y python3 curl

# Download, install and init conda
CONDA_VERSION=latest
TARGET_MACHINE=x86_64
curl "https://repo.anaconda.com/miniconda/Miniconda3-${CONDA_VERSION}-Linux-${TARGET_MACHINE}.sh" --output miniconda.sh
bash miniconda.sh
export PATH=~/miniconda3/bin/:$PATH
conda init bash
bash

# Create and activate virtualenv (change 3.10 to your desired Python version)
conda create -c conda-forge -n venv python=3.10
conda activate venv

# Export the library path
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib

pip install nvidia-pytriton

How to install using Docker

If you prefer using Docker:

  1. While NVIDIA optimized containers from the NVIDIA NGC Catalog are recommended for optimal performance, you can use any Docker image with a compatible OS
  2. For GPU acceleration, install the NVIDIA Container Toolkit
  3. Install PyTriton inside your container using any of the methods above

Example Dockerfile:

FROM nvcr.io/nvidia/pytorch:25.02-py3
RUN apt-get update && apt-get install -y python3 python3-pip && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*
RUN pip install nvidia-pytriton

Advanced: Building from Source

You can build PyTriton from source to:

  • Access unreleased hotfixes
  • Modify the PyTriton code
  • Ensure compatibility with various Triton Inference Server versions

For detailed instructions, see the Building Guide.

Reference

System Requirements

Requirement Version
Operating System glibc >= 2.35 (Ubuntu 22.04+, Debian 11+, Rocky Linux 9+, Red Hat UBI 9+)
Python >= 3.8
pip >= 20.3

Upgrading pip

If you need to upgrade your pip version:

pip install -U pip

Setting Up LD_LIBRARY_PATH

The Triton Inference Server requires that the libpython3.*.so library is accessible. Make sure to set up your LD_LIBRARY_PATH environment variable correctly before running PyTriton.